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Moves to legalize marijuana highlight the urgency to investigate
effects of chronic marijuana in the human brain. Here, we chal-
lenged 48 participants (24 controls and 24 marijuana abusers) with
methylphenidate (MP), a drug that elevates extracellular dopamine
(DA) as a surrogate for probing the reactivity of the brain to DA
stimulation. We compared the subjective, cardiovascular, and brain
DA responses (measured with PET and [11C]raclopride) to MP be-
tween controls and marijuana abusers. Although baseline (placebo)
measures of striatal DA D2 receptor availability did not differ be-
tween groups, the marijuana abusers showed markedly blunted
responses when challenged with MP. Specifically, compared with
controls, marijuana abusers had significantly attenuated behavioral
(“self-reports” for high, drug effects, anxiety, and restlessness), car-
diovascular (pulse rate and diastolic blood pressure), and brain DA
[reduced decreases in distribution volumes (DVs) of [11C]raclopride,
although normal reductions in striatal nondisplaceable binding po-
tential (BPND)] responses to MP. In ventral striatum (key brain re-
ward region), MP-induced reductions in DVs and BPND (reflecting DA
increases) were inversely correlated with scores of negative emo-
tionality, which were significantly higher for marijuana abusers
than controls. In marijuana abusers, DA responses in ventral stria-
tumwere also inversely correlated with addiction severity and crav-
ing. The attenuated responses to MP, including reduced decreases in
striatal DVs, are consistent with decreased brain reactivity to the DA
stimulation in marijuana abusers that might contribute to their neg-
ative emotionality (increased stress reactivity and irritability) and
addictive behaviors.
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Despite the high prevalence of marijuana consumption, the
effects of marijuana abuse in the human brain are not well

understood. Marijuana, like other drugs of abuse, stimulates
brain dopamine (DA) signaling in the nucleus accumbens (1, 2),
which is a mechanism believed to underlie the rewarding effects
of drugs (3–5) and to trigger the neuroadaptations that result
in addiction (reviewed in ref. 6). Indeed, in humans, imaging
studies have shown that drugs of abuse increase DA release in
striatum (including the nucleus accumbens), and these increases
have been associated with the subjective experience of reward (7–9).
However, for marijuana, the results have been inconsistent: One
study reported striatal DA increases during intoxication (10); two
studies showed no effects (11, 12); and one study reported DA
increases in individuals with a psychotic disorder and in their rela-
tives, but not in controls (13). Imaging studies of the brain DA
system in marijuana abusers have also shown different findings from
those reported for other types of substance abusers. Specifically,
substance abusers (cocaine, methamphetamine, alcohol, heroin,
and nicotine), but not marijuana abusers (14–16), show reduced
baseline availability of DA D2 receptors in striatum (reviewed

ref. 6). Similarly, cocaine abusers (17, 18) and alcoholics (19, 20),
but not marijuana abusers (16), show attenuated DA increases in
striatum when challenged with a stimulant drug, although mar-
ijuana abusers with comorbid schizophrenia or risk for schizo-
phrenia showed blunted DA increases to stimulants (21) and to
stress (22). However, prior studies are limited by their small
sample sizes (ranging from six to 16 subjects). Also, prior studies
did not control for the potential confounds that the changes in
cerebral vascular resistance associated with marijuana abuse (23–
25) could have on the delivery of the radiotracer to the brain when
using a stimulant drug as pharmacological challenge, because
stimulants decrease cerebral blood flow (26). Thus, the extent to
which there are changes in brain DA signaling in marijuana
abusers is still unclear.
Here, we compared brain DA reactivity in healthy controls

and marijuana abusers on a larger sample than that in prior
studies and measured arterial concentration of nonmetabolized
radiotracer to control for differences in radiotracer delivery to
brain. We used PET and [11C]raclopride (radioligand that binds
to D2/D3 receptors not occupied by DA) to assess the effects of
methylphenidate (MP) on the nondisplaceable binding potential
[BPND; ratio of the distribution volume (DV) in striatum to that
in cerebellum], which is the most frequent model parameter
used to estimate DA changes (27), in 24 healthy controls and 24
marijuana abusers. We also quantified the DV, which corresponds

Significance

Marijuana abusers show lower positive and higher negative
emotionality scores than controls, which is consistent, on one
hand, with lower reward sensitivity and motivation and, on
the other hand, with increased stress reactivity and irritability.
To investigate this aspect of marijuana’s impact on the human
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displaceable binding potential were not blunted) but could
reflect a downstream postsynaptic effect that in the ventral
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negative emotionality and addictive behaviors.
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to the equilibrium measurement of the ratio of the concen-
tration of the radiotracer in tissue to that in arterial plasma, to
control for potential changes in radiotracer delivery that could
confound group comparisons of stimulant-induced changes in
BPND. We used MP, which is a stimulant drug that blocks DA
transporters, because it induces robust and reproducible DA
increases in the human brain (28, 29). We predicted that MP’s
behavioral effects in marijuana abusers would be attenuated, con-
sistent with preclinical findings (30), and that decreased DA re-
activity in ventral striatum would be associated with higher scores
in negative emotionality (neuroticism), which mediates genetic
risk for marijuana dependence (31), and with addiction severity.

Materials and Methods
Participants. Twenty-four marijuana abusers and 24 healthy controls com-
pleted the studies. Participants were recruited from advertisements in local
newspapers (demographics are provided in Table 1). At least two clinicians
interviewed the patients, using a semistructured standardized interview, to
ensure that theymet the Diagnostic Statistical Manual IV diagnostic criteria for
marijuana abuse or dependence. Marijuana abusers were excluded if they had
a history of substance abuse or dependence (other than marijuana and nico-
tine), history of other psychiatric or neurological diseases, medical conditions
that might alter cerebral function (i.e., cardiovascular, endocrinological, on-
cological, autoimmune diseases), current use of prescribed or over-the-counter
medications, and/or head trauma with loss of consciousness for more than 30
min. All subjects had Hamilton’s Anxiety and Depression scores <19 (32). Ex-
clusion criteria for controls were as for the marijuana abusers, other than al-
lowance for regular marijuana use (exclusion for controls was smoking more
than one joint of marijuana per month). All subjects had a physical, psychiatric,
and neurological examination. Drug screens were done on the days of the
scans to exclude the use of psychoactive drugs (other than marijuana in
marijuana abusers). Subjects were instructed to discontinue any over-the-
counter medication 2 wk before the days scheduled for the scans. Food
and beverages (except for water) were discontinued at least 4 h prior to
the study, and tobacco cigarettes were discontinued for at least 2 h before
the study. This study was approved by the Committee on Research Involving
Human Subjects at Stony Brook University, and written informed consent
was obtained from all subjects.

Behavioral and Cardiovascular Measures. Subjective ratings (high, restlessness,
drug effects, and anxiety) were measured using self-reports (range: 1–10)
that were recorded before administration of placebo or MP and periodically
over the duration of the [11C]raclopride scans (33). At the end of the study,
participants were asked to rate the drug’s potency (scale of 1–10).

Heart rate and blood pressure were recorded before administration of
placebo or MP and periodically over the duration of the study. MP con-
centration in plasma was measured using capillary GC/MS (34).

A factorial repeated ANOVA was used to assess the effects of MP on the
behavioral measures (drug main effect) and to assess if responses differed

between controls and marijuana abusers (drug × group interaction effect).
Post hoc t tests were done to determine the direction of the findings.
For comparison purposes, we averaged the behavioral and cardiovascular
measures obtained during placebo and compared them against the aver-
aged measures during MP. For the behavioral measures, we also compared
the “peak scores” between controls and marijuana abusers.

Personality Measures and Dependency Questionnaires. Participants completed
the Multidimensional Personality Questionnaire, which provides ratings for
three main factors: positive emotionality, negative emotionality, and con-
straint (35). Positive emotionality is a combination of scores for well-being
(reward sensitivity), social potency, achievement (motivation), and social
closeness; negative emotionality is a combination of scores for stress re-
action, alienation, and aggression; and constraint is a combination of scores
for self-control, harm avoidance, and traditionalism. The marijuana abusers
also completed the Marijuana Dependency Questionnaire, which scores
seven symptoms of dependence, each on a range from 0 to 3. These ques-
tionnaires were obtained at the time of screening.

PET Scans. Studies were done with a Siemens HR+ tomograph (resolution:
4.5 × 4.5 × 4.5 mm FWHM) in 3D mode. Each subject underwent two
[11C]raclopride scans done on two separate days. Five minutes before injection of
[11C]raclopride, subjects were i.v. injected with placebo (3 mL of saline) on
one day and with MP (0.5 mg/kg) on another day. The order of adminis-
tration was randomized. The study was a single-blind design (subjects were
blinded to the drugs received). Dynamic scans were started immediately
after injection of 4–10 mCi of [11C]raclopride (specific activity of 0.5–1.5
Ci/μM at the end of bombardment) for a total of 60 min using previously
published procedures (36). Blood sampling was obtained from a catheter
placed in the radial artery, which was used to measure the concentration of
the nonmetabolized radiotracer in plasma. During the scanning period,
subjects remained in a supine position with their eyes open in a darkly lit
room and noise was kept to a minimum, except for the periodic assessment
of drug effects.

Analysis. The [11C]raclopride images were transformed to DV images and to
BPND images. These images were analyzed using statistical parametric
mapping (SPM8; Wellcome Trust Centre for Neuroimaging), which enabled
us to make comparisons on a voxel-by-voxel basis (37). We estimated the DV
for each voxel, which corresponds to the equilibrium measurement of the
ratio of the radiotracer’s tissue concentration to that of its plasma concen-
tration using a graphical analysis technique for reversible systems (38). A
custom Montreal Neurological Institute (MNI) template, which we previously
developed using the DV images from 34 healthy subjects acquired with
[11C]raclopride and the same scanning sequence (39), was used for the
spatial normalization of the DV images. For the BPND images, we normalized
the DV in each voxel to that of the DV in cerebellum [left and right regions
of interest (ROIs)], which corresponds to BPND. The DV and BPND images were
then spatially smoothed using an 8-mm Gaussian kernel to minimize the
variability of the brain anatomy across subjects.

Table 1. Demographics, clinical characteristics, and personality scores (positive emotionality,
negative emotionality, and constraint) of participants, and the significance for the comparisons
between healthy controls and marijuana abusers

Parameter Healthy controls(n = 24) Marijuana abusers(n = 24) P

Age 28.2 ± 6 26.9 ± 7 NS
Sex 50% males 50% males
Education 13.9 ± 2 13.2 ± 1 NS
Body mass index 24.3 ± 3 24.1 ± 4 NS
Tobacco 3 active 10 active 0.02

1 former 2 former
Marijuana initiation 15 ± 3 y of age
Days per week 4.9 ± 3
Joints per day 4.8 ± 3
Years of abuse 10.5 ± 2
Scores on MDQ 5.4 ± 3
Positive emotionality 52.3 ± 6 47.2 ± 10 0.05
Negative emotionality 13.7 ± 9 22.4 ± 9 0.001
Constraint 51.3 ± 10 47.7 ± 8 NS

MDQ, marijuana dependency questionnaire; NS, not significant.
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Statistical group analyses were based on a factorial repeated ANOVA SPM8
model with two groups (marijuana abusers and controls) and two conditions
(placebo andMP) and a covariate [parts permillion levels of carbonmonoxide
(CO), a marker for tobacco smoking (40)]. We used CO as a covariate because
the groups differed in smoking prevalence (Table 1). A mask of a priori se-
lected regions (dorsal and ventral striatum) and those from thalamus and
midbrain (including the subthalamic nucleus) was created using the digital
anatomical brain atlases provided with the MRIcro software (www.cabiatl.
com/mricro/). Specifically, the voxels corresponding to striatum (caudate,
putamen, and ventral striatum) and thalamus were defined in the MNI
stereotactic space using the Automated Anatomical Labeling atlas (41);
thresholding, the simplest method of image segmentation, was used to
identify midbrain voxels on a T1-weighted image (ch2.img; an average of 27
T1-weighted scans of the same individual that is included in the MRIcro
template folder). The statistical significance of group differences on MP-
induced changes in DV and in BPND within the mask of a priori selected
regions (striatum and thalamus) was set by a voxel-level threshold PFWE <
0.05, corrected for multiple comparisons with the family-wise error (FWE).
For the midbrain region, significance was set by a voxel-level threshold
PFWE < 0.05, corrected for multiple comparisons with the FWE and small vol-
ume correction (SVC) (FWE-SVC; 10-mm diameter spherical searching volume).

Independent ROIs were computed to corroborate the SPM findings using
procedures previously described (27). These ROIs were also used to assess the
correlation between MP-induced changes on DV and on BPND, with the clinical
characteristics (personality measures, dependency scores in marijuana abusers,
and drug history) and the craving responses triggered by MP.

Results
Participant Characteristics. Tobacco smoking was more prevalent
in marijuana abusers than controls; otherwise, there were no
differences in demographics between groups (Table 1). However,
the groups differed significantly in personality measures; mari-
juana abusers had significantly lower scores in positive emotion-
ality (P = 0.05) and higher scores in negative emotionality (P =
0.002) than controls (Table 1).

Correlation analysis between scores in negative emotionality and
history of marijuana abuse showed a negative correlation between
age of initiation of marijuana abuse and negative emotionality
scores (r = 0.58, P = 0.003) such that the younger the initiation, the
higher the scores. The correlations with reported daily doses of
marijuana and negative emotionality were not significant. The
correlations with positive emotionality and history of marijuana
abuse were not significant.

Plasma Concentrations of MP and Behavioral and Cardiovascular
Effects. MP concentrations in plasma (nanograms per milliliter)
did not differ between groups at 10 min (controls, 195 ± 51;
abusers, 194 ± 45), 25 min (controls, 125 ± 24; abusers, 121 ± 19),
or 40 min (controls, 102 ± 25; abusers, 94 ± 15).
MP had significant behavioral effects, and these effects were at-

tenuated in marijuana abusers compared with controls (Fig. 1A).
Specifically, MP significantly increased scores on self-reports (av-
eraged measures), and the effects differed between groups, with
controls reporting a more robust “high” (drug effect: F = 92, P =
0.0001; interaction: F = 6.2, P = 0.02), “restlessness” (F = 35, P =
0.0001; interaction: F = 5.8, P = 0.02), “anxiety” (F = 7, P = 0.01;
interaction: F = 5.8, P = 0.02), and “drug effects” (F = 100, P =
0.0001; interaction F = 4, P = 0.05) than marijuana abusers. Also,
comparisons of “peak” behavioral effects to MP were significantly
stronger for controls for high (P = 0.01), restlessness (P = 0.003),
anxiety (P=0.03), anddrugeffects (P=0.02), than for themarijuana
abusers. The potency of MP was also reported to be stronger by the
controls than by the marijuana abusers (8.3 ± 2 vs. 5.8 ± 3; t = 3.4,
P = 0.002). In marijuana abusers, MP increased self-reports of
marijuana craving (Placebo: 4.0 ± 3–MP: 6.3 ± 3; P = 0.006) and
tobacco craving (Placebo: 2.4 ± 2–MP: 3.8 ± 4; P = 0.05).

A

B

Fig. 1. Behavioral (A) and cardiovascular (B) effects in healthy controls (black symbols) and marijuana abusers (gray symbols) after placebo (PL; dashed lines)
and after MP (continuous lines). (A) MP-induced increases in self-reports of high, drug effects, anxiety, and restlessness were significantly lower for marijuana
abusers than controls (P < 0.05). (B) MP-induced increases in heart rate and diastolic blood pressure were lower for marijuana abusers than controls (P < 0.05).
BPM, beats per minute.
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MP increased heart rate (F = 98, P = 0.0001) and systolic
(F = 153, P = 0.0001) and diastolic (F = 65, P = 0.0001) blood
pressure in both groups, and MP’s effects differed between
groups for heart rate (interaction effect; F = 4.6, P = 0.04) and
diastolic blood pressure (interaction effect: F = 4.0, P = 0.05),
but not for systolic blood pressure (Fig. 1B). Post hoc t tests
revealed that MP-induced increases in heart rate and diastolic
pressure were significantly stronger (P < 0.05) in controls than in
marijuana abusers.

Effects of MP on the DVs of [11C]Raclopride. The SPM analysis
showed no group differences in baseline measures of DV. It also
showed that MP significantly decreased DV in brain and that the
effects were significantly larger in controls than in marijuana
abusers (Fig. 2). Individual plotting of MP-induced changes in
DV showed that MP-induced changes in cerebellum were de-
creased in controls but not in marijuana abusers and that there
were larger decreases of MP-induced changes in striatum in
controls than in marijuana abusers (Fig. 2).
The ROI analysis corroborated that MP decreased the DV in

cerebellum and striatum and that the effects were larger for
controls than abusers. For cerebellum, the drug (F = 15, P =
0.0004) and drug × group interaction (F = 8.2, P = 0.007) were
significant; post hoc t tests showed larger decreases in controls
(13 ± 11%) than abusers (1.4 ± 16%) (P = 0.01). For caudate,
the drug (F = 41, P = 0.0001) and interaction (F = 4.8, P = 0.04)
were significant; post hoc t tests revealed larger decreases in
controls (22 ± 18%) than abusers (9 ± 22%) (P = 0.05). For
putamen, drug (F = 93, P = 0.0001) and interaction (F = 6.9, P =
0.02) were significant; post hoc t tests showed larger decreases in
controls (30 ± 16) than abusers (16 ± 21%) (P = 0.02). For
ventral striatum, drug (F = 56, P = 0.0001) and interaction (F =
7.3, P = 0.01) were significant; post hoc t tests showed greater
decreases in controls (25 ± 18%) than abusers (11 ± 25%) (P =
0.02). A group (controls vs. abusers) by region (delta DV in
caudate, putamen, ventral striatum, and cerebellum) comparison
revealed that group differences differed between regions (F =
3.5, P = 0.02); post hoc analysis showed that group differences in

cerebellum were larger than in putamen (P = 0.02) and ventral
striatum (P = 0.02), and showed a trend in caudate (P = 0.07).
This finding is significant; it confounds group comparisons of
BPND because the latter measure is normalized to the DV in
cerebellum. Note that attenuated decreases in cerebellar DV
with MP in the marijuana abusers could result in an over-
estimation of their DA increases, reflecting an apparent lower
striatal-DV/cerebellar-DV ratio (BPND) with MP (see below).

Correlations Between MP-Induced Changes in DV and Clinical Measures.
Correlation analysis revealed that MP-induced decreases in
DV in ventral striatum were negatively associated with scores
in negative emotionality (r = 0.51, P = 0004), and weaker cor-
relations were observed in putamen (r = 0.37, P = 0.02) and
caudate (r = 0.35, P = 0.02) such that the larger the DV de-
creases, the lower were the scores of negative emotionality. Cor-
relation with positive emotionality and constraint were not
significant.
MP-induced craving for marijuana in the marijuana abusers was

negatively associated with DV decreases in putamen (r = 0.46, P =
0.03) and ventral striatum (r = 0.51, P = 0.01) such that participants
with the smallest decreases had the most intense craving.

Baseline Measures of D2/D3 Receptor Availability (BPND). For the
baseline (placebo) measures, the SPM analysis revealed no group
differences in BPND (D2/D3 receptor availability). When we de-
creased the threshold of significance to uncorrected P < 0.05, SPM
showed lower values in marijuana abusers than in controls in
ventral striatum (0, −2, −8; statistical t values = 2.59, P un-
corrected = 0.007).
The ROI analysis also showed a nonsignificant trend toward

lower baseline BPND in marijuana abusers than in controls in
ventral striatum (controls, 3.20 ± 0.3; abusers, 2.97 ± 0.59; P =
0.11) and no differences in caudate (controls, 2.80 ± 0.36;
abusers 2.76 ± 0.57) or putamen (controls, 3.42 ± 0.41; abusers,
3.35 ± 0.57).

A B

Fig. 2. (A) SPM results for the comparison of MP’s effects on DVs (delta measures) between controls and marijuana abusers. The figure shows the contrast
controls > abusers, indicating stronger MP-induced decreases in DV in controls (P < 0.005), and color bars indicate t scores. There were no regions where
marijuana abusers showed greater decreases than controls. (B) Individual DV values in cerebellum and putamen after placebo (PL) and after MP for the
marijuana abusers and the controls. *P < 0.05; **P < 0.005.
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Effects of MP on BPND. The SPM analysis revealed significant
decreases in BPND with MP compared with placebo (interpreted
as reflecting DA increases) in striatum in both controls and
marijuana abusers (Fig. 3 and Table 2). The SPM analysis
revealed no group differences in MP-induced decreases in BPND
in striatum but unexpectedly revealed larger BPND decreases in
marijuana abusers than in controls in midbrain (region centered
in susbtantia nigra that also encompassed subthalamic nucleus;
center of cluster left: 12, −14, −10, and 132 voxels, t = 3.1; center
of cluster right: 14, −18, −8, and 27 voxels; t = 2.9; PFWE < 0.05;
SVC = 10 voxels) (Fig. 3 and Table 2).
The ROI analysis corroborated a significant group × drug

interaction in midbrain (F = 14, P = 0.0006), and post hoc t test
analyses showed that whereas in marijuana abusers, MP de-
creased BPND in midbrain (−3.5 ± 8%; F = 5.4, P = 0.03), MP
increased BPND in controls (4 ± 6%; F = 9.2, P = 0.006).

Correlations Between MP-Induced Changes on BPND and Clinical
Measures. Voxel-wise correlation analysis revealed that MP-induced
decreases in BPND in ventral striatum were inversely associated
with scores in negative emotionality (Fig. 3 B and C) such that
the larger the BPND decreases, the lower the scores. The striatal
correlations with positive emotionality and constraint were
not significant.
Because the SPM revealed a significant group difference in

MP-induced changes in midbrain BPND, we also performed
correlations with this brain region and showed a significant
correlation with positive emotionality (r = 0.42, P = 0.003) such
that the greater the BPND decreases, the lower the scores. In the
marijuana abusers, MP-induced decreases in BPND in midbrain
were correlated with increases in marijuana (r = 0.40, P = 0.05)
and tobacco (r = 0.45, P = 0.03) craving, as well as with the
dependency scores (r = 0.43, P = 0.04), such that the greater the
decreases in BPND, the higher was the craving triggered by MP
and the higher were the dependency scores.

Discussion
Here, we show that marijuana abusers had attenuated behavioral
and cardiovascular responses and blunted reductions in striatal
DV (although normal reductions in BPND) when challenged with
MP compared with controls, which is consistent with decreased
brain reactivity to DA stimulation. We also corroborate prior
findings (14–16) of no significant differences in baseline striatal
D2/D3 receptor availability between controls and marijuana
abusers and provide preliminary evidence of abnormal midbrain
DA reactivity in marijuana abusers.

DA D2/D3 Receptor Availability in Striatum.Only four brain imaging
studies (totaling 42 marijuana abusers) have measured DA D2/
D3 receptors (14–16, 42). These studies showed no differences in
striatal D2/D3 receptors between marijuana abusers and con-
trols, but their generalizability is limited by the small sample sizes
(samples ranged from n = 6 to n = 16). Thus, our results showing
no differences in D2/D3 receptor availability (except for a trend
in ventral striatum), using a larger sample (24 marijuana abusers)
than that used for studies that identified reductions in striatal
D2/D3 receptors in alcoholics and cocaine abusers, indicate that
marijuana abusers, different from other drug abusers, do not
show significant striatal D2/D3 receptor reductions. This differ-
ence could reflect marijuana’s agonist properties at cannabinoid
1 (CB1) receptors, which heteromerize with D2 receptors, an-
tagonizing their effects (43). Both CB1 and D2 receptors couple
to Gi-o proteins and inhibit adenylyl-cyclase, whereas their co-
stimulation results in Gs protein-dependent activation of adenylyl-
cyclase (44, 45). Moreover, CB1 receptor agonists and antagonists
counteract and potentiate, respectively, D2 receptor agonist
effects (46–49), although D2 and CB1 receptor interactions might
differ between rodents and primates (50, 51). It is therefore pos-
sible that in marijuana abusers, chronic CB1 receptor stimulation
prevented the striatal D2/D3 receptor down-regulation observed

A B

C

Fig. 3. (A) SPM results for the comparison of MP vs. placebo on the BPND images from [11C]raclopride in marijuana abusers (MA) and in healthy controls (HC)
(Puncorr < 0.005) and group comparisons for the effects of MP (ΔBPND) (P < 0.01, cluster size of 10 voxels). The contrast MA > HC indicates that MP induced
greater decreases in BPND in midbrain in marijuana abusers (red circles), and color bars indicate t scores. There were no regions where MP decreased BPND
more in controls than marijuana abusers. (B) SPM results for the voxel-wise correlation between MP-induced decreases in BPND (ΔBPND) and scores in negative
emotionality (NEM). (C) Regression slopes for the correlation between MP-induced changes in BPND (ΔBPND) in the ventral striatum and NEM in healthy
controls (blue) and in marijuana abusers (red). The larger the decreases in BPND, the lower were the scores in NEM.
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with repeated drug use (reviewed in ref. 6). However, it should be
noted that the marijuana abusers studied in the present and prior
studies have been at least 10 y younger than the cocaine abusers
and alcoholics studied by prior PET studies, which is relevant
because striatal D2/D3 receptors decrease with age (52), and it is
hypothesized that drugs accelerate the effects of brain aging (53).
Thus, studies in older marijuana abusers are needed to clarify this.

MP-Induced Changes in DV. In controls but not in marijuana
abusers, MP reduced cerebellar DV. To ensure that the DV
responses in the controls were consistent with prior findings,
we performed a secondary analysis on the effects of MP on
the cerebellar DV in an independent cohort of controls, which
showed a 12% reduction, and in a sample of adults with attention
deficit hyperactivity disorder (ADHD), which also showed an
11% reduction (for controls of the current cohort, the cerebellar
DV decrease was 13 ± 11%). The mechanism underlying the lack
of an effect of MP in cerebellar DV in abusers is unclear but
could reflect the effects of chronic marijuana on cerebrovascular
reactivity (increased cerebral vascular resistance) (23–25), which
might have prevented MP-induced vasoconstriction and associ-
ated reductions in radiotracer delivery to the brain. The atten-
uated decreases in DV with MP in the marijuana abusers were
observed throughout the brain but were most accentuated in
cerebellum. The higher sensitivity of the cerebellum to what we
interpret to reflect changes in vascular reactivity with marijuana
abuse is consistent with clinical findings that report strokes as-
sociated with marijuana abuse are more frequently localized in
the posterior circulation and ischemia is most frequently ob-
served in cerebellum (25, 54–56). Cerebellar arteries express
CB1 receptors in the smooth muscle layer (57), but because
comparisons with arteries in other brain regions have not been
done, it is not possible to determine if higher levels of CB1
receptors in cerebellar arteries underlie their higher sensitivity to
vascular effects from marijuana.
However, CB1 receptors in cerebellum are also expressed in

neurons and glia (58), and the cerebellum is a region that is
affected in marijuana abusers (59–61); thus, we cannot rule out
the possibility that other factors contribute to the lack of an ef-
fect of MP on the cerebellar DV in the marijuana abusers.
MP also decreased the DV in striatum to a greater extent in

controls than in abusers (Fig. 2). In ventral striatum, these
decreases were associated with negative emotionality and with
marijuana craving such that the lower the response, the higher
the negative emotionality and the craving. This would suggest
that these attenuated responses might reflect reduced striatal DA

reactivity in marijuana abusers compared with controls even
though there were no group differences in MP-induced decreases
in BPND (see below). This is consistent with findings from an im-
aging study with [18F]-dopa that reported lower than normal DA
synthesis capacity in the striatum of marijuana abusers (62).

MP-Induced Changes in BPND. We showed no group differences in
MP-induced changes in BPND in striatum, which is the standard
measure for assessing DA changes. Similarly, a prior study
reported no differences in amphetamine-induced decreases in
BPND between marijuana abusers and controls (16). However,
the significant group differences in MP’s effects on the DV in
cerebellum confound the findings because BPND uses the cere-
bellum as a reference region to normalize for nonspecific bind-
ing. Because the DV in cerebellum was not decreased by MP in
marijuana abusers but was decreased in controls, this would
result in an overestimation of the decrease in BPND with MP
(cerebellar denominator would have a relatively larger value)
and an overestimation of DA increases in marijuana abusers
compared with controls.
Interestingly, an imaging study comparing DA increases

using BPND and 4-propyl-9-hydroxynaphthoxazine ([11C]PHNO)
(radiotracer with >20-fold higher affinity for D3 over D2 receptors,
and presumably more sensitive to competition with endogenous
DA) (63, 64) in response to a stressor in individuals at high risk
for schizophrenia showed that those who abused marijuana had a
blunted response, consistent with decreased DA signaling (22).
Because the study used cognitive stress as a challenge, it was not
confounded by potential group differences in stimulant-induced
changes in cerebellar radiotracer delivery.
Unexpectedly, SPM revealed that MP decreased BPND in

midbrain (centered in substantia nigra) in marijuana abusers
but not in controls. Although the mechanism(s) underlying this
group difference is unclear, we speculate that because the mid-
brain has a high concentration of D3 receptors (65), which are
more sensitive to endogenous DA than D2 receptors (66), it
could reflect up-regulation of D3 receptors in marijuana abusers.
Indeed, in rodents, chronic Δ (9)-tetrahydrocannabinol (THC; the
main psychoactive ingredient of marijuana) increased D3 re-
ceptors in midbrain (30). In the marijuana abusers, an MP-induced
decrease in midbrain BPND correlated with craving and with de-
pendency scores. A similar finding was reported in methamphet-
amine abusers, in whom up-regulation of D3 receptors in midbrain
(assessed with [11C]PHNO) correlated with amphetamine-induced
craving (30, 67). This, along with preclinical studies showing that
D3 receptor antagonists interfere with drug seeking and cue- and

Table 2. Statistical information for clusters showing significant changes for BPND in marijuana
abusers and in healthy controls for the contrast placebo BPND > MP BPND, and for clusters
showing significant differences for ΔBPND for the contrast marijuana abusers > controls (A > C)

Brain region

MNI
coordinates,

mm
Cluster size (k)

# voxels Abusers,t score Controls,t score A > C,t scorex y z

Placebo BPND > MP BPND
Putamen 30 −6 0 930 11.7 14.4
Ventral striatum 14 14 −6 7.3 9.3
Globus pallidum −24 −4 0 818 10.2 12.3
Ventral striatum −4 12 −8 7.8 7.2
Caudate −14 20 4 6.6 5.9

Abusers ΔBPND > Controls ΔBPND
Left midbrain −12 −14 −10 132 3.5 NS 3.1
Right midbrain 14 −18 −8 27 NS −3.4 2.9

Statistical threshold for comparisons of placebo > MP: t score = 5 (PFWE < 0.05); statistical threshold for
comparisons abusers > controls: t score = 2.4 (P < 0.01, uncorrected; 10 voxels).
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stress-induced reinstatement (68), suggest that up-regulated D3
receptor signaling in midbrain might contribute to drug craving and
to decreased sensitivity to reward in marijuana abusers (see below).
However, because the midbrain finding was unexpected, we report
it as a preliminary finding in need of replication.

Blunted Behavioral and Cardiovascular Responses to MP in Marijuana
Abusers. Behavioral and cardiovascular effects of MP have been
associated with MP-induced DA increases in striatum (9, 69), so
the blunted responses in the marijuana abusers are also consistent
with decreased striatal reactivity to DA signaling. Although, to our
knowledge, this is the first clinical report of an attenuation of the
effects of MP in marijuana abusers, a preclinical study had re-
ported that rats treated chronically with THC exhibited attenuated
locomotor responses to amphetamine (2.5 mg/kg administered
i.p.) (30). Such blunted responses to MP could reflect neuro-
adaptations from repeated marijuana abuse, such as down-
regulation of DA transporters (70). The attenuation of MP’s effects
could also reflect abnormal D2 receptor function, as was pre-
viously suggested to explain findings in marijuana-abusing schizo-
phrenic patients, who, despite displaying low DA release, showed
increases in psychotic symptoms when challenged with amphet-
amine (21). Finally, it is also possible that the attenuated responses
reflect blunting of MP’s noradrenergic effects because MP blocks
both DA and norepinephrine transporters.
Our findings of blunted responses to MP in marijuana abusers

have clinical implications because they suggest that individuals
with ADHD who abuse marijuana might be less responsive to the
therapeutic benefits derived from stimulant medications.

Reduced Positive Emotionality and Increased Negative Emotionality
in Marijuana Abusers. Marijuana abusers showed lower scores on
positive emotionality and higher scores on negative emotionality
than controls, consistent, on the one hand, with lower reward
sensitivity and motivation and, on the other hand, with increased
stress reactivity and irritability. These characteristics overlap with
the amotivational syndrome (71) and with the enhanced sensitivity
to stress associated with marijuana abuse and other addictions (72,
73). Positive emotionality was inversely associated with MP-
induced increases in midbrain DA, which could reflect the fact that
in midbrain, D2 and D3 are autoreceptors; therefore, their stimu-
lation would result in decreased DA release in striatum (including
accumbens) (74), leading to decreased sensitivity to reward and
amotivation (75). In contrast, MP-induced DA increases in ventral
striatum were negatively associated with scores on negative emo-
tionality, which is consistent with the protective role of DA sig-
naling in negative emotions (76). The association between negative
emotionality and age of initiation of marijuana abuse is consistent
with prior findings of worse outcomes with earlier initiation of
marijuana abuse (77).

Study Limitations. The main limitation of this study was the in-
adequacy of BPND for comparing the DA increases between
controls and marijuana abusers due to the group differences on
the effects of MP on cerebellar DV. Also, [11C]raclopride cannot
distinguish between D2 and D3 receptors, so studies with D3
receptor ligands are needed to determine if the increased mid-
brain DA response in marijuana abusers reflects D3 receptor up-
regulation. The relatively poor spatial resolution of PET limits
accuracy in the quantification of small brain regions, such as
midbrain. Our study cannot ascertain if group differences reflect
chronic use of marijuana rather than premorbid differences, and
whether marijuana abusers will recover with detoxification. Al-
though attenuation of the effects of MP could reflect interference
from CB1 receptor stimulation by marijuana, this is unlikely be-
cause marijuana abusers reported that their last use of marijuana
was 1–7 d before the study when cannabinoids in plasma are still
detectable but at concentrations unlikely to have pharmacological
effects (78). However, future studies done after longer periods of
withdrawal are needed to control for potential confounds from
THC and its metabolites in plasma and to determine if the blunted
responses recover.
We did not obtain MRI scans on the participants. However,

this is unlikely to have affected the results because measures of
[11C]raclopride binding are equivalent when using a region
extracted from an MRI scan or from the [11C]raclopride scan
(79), and there is no evidence that marijuana abusers have
striatal or cerebellar atrophy (reviewed in ref. 80). Finally, the
groups differed in smoking status, but this is unlikely to account
for the group differences because CO levels were used as
a covariate in the analysis and there were no differences in the
effects of MP between marijuana abusers who smoked cigarettes
and those who did not.

Conclusions
The significantly attenuated behavioral and striatal DV response
to MP in marijuana abusers compared with controls, indicates re-
duced brain reactivity to DA stimulation that in the ventral striatum
might contribute to negative emotionality and drug craving.
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